Disjoint paths in sparse graphs

نویسنده

  • Cédric Bentz
چکیده

We generalize all the results obtained for maximum integer multiflow and minimum multicut problems in trees by Garg, Vazirani and Yannakakis [Primal-dual approximation algorithms for integral flow and multicut in trees, Algorithmica 18 (1997) 3–20] to graphs with a fixed cyclomatic number, while this cannot be achieved for other classical generalizations of trees. We also introduce the k-edge-outerplanar graphs, a class of planar graphs with arbitrary (but bounded) treewidth that generalizes the cacti, and show that the integrality gap of the maximum edge-disjoint paths problem is bounded in these graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient algorithms for minimal disjoint path problems on chordal graphs

Disjoint paths have applications in establishing bottleneck-free communication between processors in a network. The problem of finding minimum delay disjoint paths in a network directly reduces to the problem of finding the minimal disjoint paths in the graph which models the network. Previous results for this problem on chordal graphs were an O(| V | | E |) algorithm for 2 edge disjoint paths ...

متن کامل

Space-Efficient Approximation Scheme for Maximum Matching in Sparse Graphs

We present a Logspace Approximation Scheme (LSAS), i.e. an approximation algorithm for maximum matching in planar graphs (not necessarily bipartite) that achieves an approximation ratio arbitrarily close to one, using only logarithmic space. This deviates from the well known Baker’s approach for approximation in planar graphs by avoiding the use of distance computation which is not known to be ...

متن کامل

2-Vertex Connectivity in Directed Graphs

We complement our study of 2-connectivity in directed graphs [7], by considering the computation of the following 2-vertex-connectivity relations: We say that two vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint paths from v to w and two internally vertex-disjoint paths from w to v. We also say that v and w are vertex-resilient if the removal of any vertex dif...

متن کامل

Complexity and Approximation Results for the Min-Sum and Min-Max Disjoint Paths Problems

Given a graph G = (V,E) and k source-sink pairs {(s1, t1), . . . , (sk, tk)} with each si, ti ∈ V , the Min-Sum Disjoint Paths problem asks to find k disjoint paths connecting all the source-sink pairs with minimized total length, while the Min-Max Disjoint Paths problem asks for k disjoint paths connecting all the sourcesink pairs with minimized length of the longest path. We show that the wei...

متن کامل

On Shortest Disjoint Paths in Planar Graphs

For a graph G and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}, the k disjoint paths problem is to find k vertex-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti for each i = 1, . . . , k. In the corresponding optimization problem, the shortest disjoint paths problem, the vertex-disjoint paths Pi have to be chosen such that a given objective function is minimized. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2009